Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 108: 110711, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156452

RESUMO

Long non-coding RNAs (lncRNAs) have been implicated in gastric cancer (GC) carcinogenesis and progression. However, the role of LINC00501 in GC growth and metastasis remains unclear. In this study, we found that LINC00501 was frequently upregulated in GC cells and tissues and was closely related to adverse GC clinicopathological features. Aberrant overexpression of LINC00501 promoted GC cell proliferation, invasion, and metastasis both in vitro and in vivo. Mechanistically, LINC00501 stabilized client protein STAT3 from deubiquitylation by directly interacting with cancer chaperone protein HSP90B1. Furthermore, the LINC00501-STAT3 axis modulated GC cell proliferation and metastasis. In turn, STAT3 bound directly to the LINC00501 promoter and positively activated LINC00501 expression, thus forming a positive feedback loop, thereby accelerating tumor growth, invasiveness, and metastasis. In addition, LINC00501 expression was positively correlated with STAT3 and p-STAT3 protein expression levels in gastric clinical samples. Our results reveal that LINC00501 acts as an oncogenic lncRNA and that the LINC00501-HSP90B1-STAT3 positive feedback loop contributes to GC development and progression, suggesting that LINC00501 may be a novel potential biomarker and treatment target for GC.


Assuntos
RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Retroalimentação , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/patologia
2.
Cell Death Dis ; 13(11): 939, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347835

RESUMO

Myosin 1b (Myo1b) is an important single-headed membrane-associated motor of class I myosins that participate in many critical physiological and pathological processes. Mounting evidence suggests that the dysregulation of Myo1b expression has been extensively investigated in the development and progression of several tumors. However, the functional mechanism of Myo1b in CRC angiogenesis and autophagy progression remains unclear. Herein, we found that the expression of Myo1b was upregulated in CRC tissues and its high expression was correlated with worse survival. The overexpression of Myo1b promoted the proliferation, migration and invasion of CRC cells. Conversely, silencing of Myo1b suppressed tumor progression both in vitro and in vivo. Further studies indicated that Myo1b inhibited the autophagosome-lysosome fusion and potentiated the VEGF secretion of CRC cells to promote angiogenesis. Mechanistically, Myo1b blocked the autophagic degradation of HIF-1α and then led to the accumulation of HIF-1α, thus enhancing VEGF secretion and then promoting tumor angiogenesis in CRC. Together, our study provided novel insights into the role of Myo1b in CRC progression and revealed that it might be a feasible predictive biomarker and promising therapeutic target for CRC patients.


Assuntos
Neoplasias Colorretais , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular Tumoral , Neovascularização Patológica/metabolismo , Miosinas , Autofagia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Colorretais/patologia , Miosina Tipo I/genética
3.
Oncogene ; 41(43): 4823-4838, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36153370

RESUMO

Although the abnormal expression of miRNAs in cancer cells is a widely accepted phenomenon, the molecular mechanisms underlying miR-3648 progression and metastasis in gastric cancer (GC) remain unclear. miR-3648 expression is downregulated and its ectopic expression in GC cells significantly suppressed cell proliferation and metastasis. Mechanistic analyses indicated that miR-3648 directly targets FRAT1 or FRAT2 and inhibits FRAT1- or FRAT2-mediated invasion and motility in vitro and in vivo. Moreover, FRAT1 physically interacted with FRAT2. Furthermore, FRAT1 overexpression promoted GC cell invasion, whereas siRNA-mediated repression of FRAT2 in FRAT1-overexpressing GC cells reversed its invasive potential. Besides, miR-3648 inactivated the Wnt/ß-catenin signalling pathway by downregulating FRAT1 and FRAT2 in GC. Interestingly, c-Myc, a downstream effector of Wnt/ß-catenin signalling, was also downregulated by miR-3648 overexpression. In turn, c-Myc negatively regulated miR-3648 expression by binding to the miR-3648 promoter. In addition, miR-3648 expression levels were negatively correlated with c-Myc, FRAT1, and FRAT2 expression in fresh gastric samples. Our studies suggest that miR-3648 acts as a tumour-suppressive miRNA and that the miR-3648/FRAT1-FRAT2/c-Myc negative feedback loop could be a critical regulator of GC progression.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , beta Catenina/genética , beta Catenina/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Retroalimentação , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno , MicroRNAs/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA